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s IN A ‘I‘APEBED ZBOX '.BEAM -

By Eé.win T hruszeWskl
SOMiRY

A methed 'is presented for the calcula.tion of ’benﬁing atresses
due to torsion inh & tapered box beam. A s:pecial teper was assumed

in which all flanges, if extended, would meet &t & poin'b. The genera.:‘l.' . --

procedure’ of énslysis given 18" similar “to the proce;‘iure for & non=-
tapered beam presented by Paul Kulm in his, paper, ‘A Method. of
Calculating Bending Stresges’ Tie' 0 Torsion' a NA@A £RR Dec.. 1042,
Recurrencs Tormulss’ davélbpéd for use in 'this calcula.tion are -
included. A comparison was made of flengé and sheet stresses in’
boxes with varying taper including a. nontapered. '.box, )
- The' restits’ cbtdined by ‘this method Were compared wyith experi-
mental data obtainéd from tests gerformed on a.tapered box beam.
The box béam was tested mider’ 'bwo in&ependen'b cond.:,'hions of loading: .
first, ‘& concentrated torgue at thé tip and later, .8 concentrated -
torque at the guarter point of the span. The experimential results
obtained from these tests showed good egreeuent with the calculated
results. Calculations for the test specimen for the two 1oad.ing
conditions are also shown. .

mmonﬁc"wit&l\'r B

'-'.-.

The basic loasd-cerrying structure of meny. aircrai‘t wings is &
Yox of approxrimately rectangular ‘eross ‘section consisf,ing of the
front end reer spers and the top and bottom skins of the wing. This
box is stressed by both bending and torsional loads. Only the
torsional loads are dlscussed in the present papser.

The determination of the stress distridbution in a box under
torsion is a relatively simple problem provided that the cross
section of the box is not constrained in eny mamner against werping.
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In this case the well-known Bredt formula for thin-walled torsion
tubes 1s gpplicable. If some restraint is offered to warping,
however, a set of secondary stresses is introduced in the box.
Because the resultants of these secondary stresses are actually
bending moments in the planes of the walls and are accompenied by
‘the sheaxr forces necessary to cause spanwise variation of the
bending moments, thesse stresses are usually referred to as bending
gtresses due to torsion.

A method for the celculation of these bending stresses 1s
presented in reference 1. In order to simplify the -calculation,
Kuhn utilizes an assumption that the cross=-sectional dimensions
and the torques are constent within each bay of the box and gives
the solution only for boxes in vwhich the sides are parallel.

Actual wings, however, are usually tapered both in depth and in
width. The present work 1ls intended to furmish a theoreticel
solution of the effects of taper on bending stresses due to torsion
and also to present experimental verification of ‘the method of
calculation. .

The body of this peper-im divided into two partsu The Pirst
part deals entirely with the theoretical development of the formulas
for bendihg stresses due to:-torsion in a tapered box beam. The
general procedure of. analysis presented 1s’ similex. to thé procedures
presented by Kuhn in rgference 1 and by Ebner in veference 2. In
order to simplify the . wethematical analygis .a épeclal-taper is
assuned; that is,. the sides of ‘tho box are assumed to taper linearly
in such a way as to mest at a point.

The second pert of the paper deals with the experimental
verification of the theoretical formulas: A description of the test
specimen and the test setup is given. Comparisons are then made of
tho celculated and experimental results for two independent conditions
of loeding. Compleste numerical solutions for both loading conditions
are given in the eppendix. - - . .

-SYMBOLS -

13

A . effective flange area square inches . L
Agp _erea of flangs angle, square inches

erea of cover stringer, square 1nches
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B Young's modnlus of elasticity, ﬁsi S
F flange loesd &t any point, pounds |
G shear modulus, psi
Ky, K, KS taper constants
length of fl&né,e in individusl bay, inches
R taper ratio ( —b—g—-— c;r .’n )
n-1 Cn-1
T externael torque, inch-pounds
v volume of material, cubic inches
X redundent flenge force, pounds
& distance between bulkheads, inches
width of cover, inches
c depth of spar, inches
F, &, p warping constants
m designetion for general texrm In series
n designation for typicel bey
q shearlficw, pounds per lnch
T designetion of root bay
s _distaﬁce in each bay neasured along exis in flange, inches
t sheet %hiéh:;ess, inches.
W warping deformaetion, inches
X distence in each bay from outboerd bulkhead measured

slong axis, inches

engle between flange and center line of cover, radilens
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e angle between flange and center line of spar, radians
o ‘normal flange stress,-psi

T shear stress, psil

Tav average veluve of shear stress, psil
Subscripts:

b rofers tb covers

¢ refers to spars .
i designates inboard end of bay

o] designates outboard end of dbay
Superscripts:

T designates stresses duwe to torgue

U designates stresses dus to dummy wnit loeds
X deslgnates stresses dwe to X-forces

The subscripte of the redundent flange force X and of
dimensions b and ¢ designate the stations at vhich they exist,
vherees the subscripts for T, w, p, J, and [ designate the bay
undsr consideration.

The bulkheeds or stations are denoted by 0, 1, 2,... n-1, n,
n+l,... r, starting from the tip or outboard end and proceeding to
the root or inboard end. (See fig. l.) .The bays are also numbered
from the tlp, the tip bay being designated as number one (ze0
fig. 1). A bay therefore carries the number of its inboerd bulkhead
or station. _

.
P E w AR M B e —————

— = ———
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IEVELOFMENT OF THEORETICAL FORMUTAS

. In actual wing design neither the epenwise veriaticn of’ the
torque nor the cross-sectionel dimensions can be represented by
simple mathematicel expressions. In order to simplify the '
mathematical celculations the box is divided at the bulkheads into
a -number of bays snd the torque is assumed constant within sach
individual bay.

A'box beam under torsicn is en indeterminate structure. In
okder to meke the structure statically determinate, the box is cut
at each bulkhead end redundant flange forces X sare applied at
all flanges . .These ZX-forces areé axial forces applied at each
flange, as shown in figure 2. Undsr the acticn of the torque T
and the flange forces X +the box is deformed as shown by tho
deshed lines in figure 2. The amount of deformebtion is calculated
by the use of the principle of virtual work, sometimes known as
the dummy-unit-losd method. The X-forces are then Tound by the
application of the principle of consistent deformation of adjacent
bays.

Sign convention.- External torques T are positive when acting
clockwise as viewed from the tip. Shear stresses T aré positive
when acting in.the direcitlon of shsar sitresses caused by pesitive
torque. The X-forces.are positive when acting irn the directions
shown in the sketch in figure 2. Normal stresses o are positive

.positive in the direction as shown by ‘the dashed lines in figure 2.

ggncral assum@tgons < ‘The cross section of tha Box is &ssumed to

'ﬁé rectangular .and doubly symmetrical: 'The shapse of thé cross section

is maintained by the bulkheads which ere essumed-to be rigid in’.
thelr own planes. In plece of the -attual structure,- the eguivalent
structure. shown in figure 2 is used, in which all the exea capable
of carrying normel stresses is concentrated in the flengées. The
walls of the equlvalent structurs are assume& 7o) carry only shear
stresses and the flanges,. all the’ normal stresses. " In crder 1o
allow for the fact that the walls ‘cen actually cATYy normal; stresses,

- each flange area 1s Increased by one-sixth of-the area of both &

cover and & spar web. TIf the covers include stiingers;-en effective
siringer aresa is added to each flange. This effective stringer arsa
is that area which, when concentrated at the flange, gives the same
section modulus about the neutral axis of the cover as the actual
stringers. In the case of equally spaced stringers the effective
stringer area is simply one-sixth of the total stringer area. The
taper of the box is such that the flanges meet at a point. The
effective flange area 1s assumed constent within each bay.
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Stresses in an Individual Bay

The formulas glven herein are derived for a typical bay =n,
bounded by the bulkheads n-1 end n, (fig. 2). The bay is acted
on by three independent sets of loads: a torque T, on both ends

of the bay, a group of X -forces on the inboerd end, and a group

of Xn_l-forces on the outboard end. Formulas are derived for the

stresses due to each of these independent losds. The final stress
distribution may be obtalned by superposing the individusl stresses.

Stresses cauged by torgue.>~ The shear stresses ceused by the
torque acting on a bay are given by tho well-known formula for
shells in torsion (Bredt's formuls)

T, 1

T

_b=2bc‘bb I _

; (1)
T _-_-_1’,1___.T ' :
¢ obet, -

where b is ths width of the cover and ¢ +the depth of the spar
at some distence x' -Ffrom the outboard end (fig. 3). In the case of
pure torgue no normel stresses are set up in the flangs.

Stresses caused by the X-forces.- When a sst of X-forces is
applled to the end of the bay, both axliel stresses In the flanges

end shear stresses in the walls are set up within the bay. Unlike
-the sheer stresses for the nontapered box, the shear stresses in the
‘tapered box are not constent throughout the day. -

In order to study thé distribution of the shesr stresses
within the individual walls, a section of a wall is isolated as
shown in figure 3(a). The free tody shown in this figure is a part
of a sper web bounded by two planes cutting the spar Just ineide
the flanges and by two parallel plenes, ons just inside the n-1 dbulk-
head and snothér parellel to it and at & distance x from it. The

am’
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" 'loading on the body is also shown in the figure. By summation of

nmoments about the point of intersection of the flenges, an expression
is obtained for the shear flow G in the sper in terms of the out-

board shear flow %,
o 2
n-l .
qG = ( c > q_cn"l . (2&)

and, similarly, In the cover

o .
b .
={.nzl 2b

T

A

where the notation is the same as that shown in figure 3(a).

The distribution of the sheoar flow qa is cbtelned from an

" infinitesimal section of = spar web isola'bed. as shown in figure 3(b).

The free body shown in this figure 1s a section of the spar web
bounded by two parallel plenss an Infinitesimsl distence dx apart
and by two planes cutting the spar just inside the flange. From

a summation of moments, the fundasmental sheer-flow rela.tion in +the
spa.r for a. tapered box beam 1s obtained,

%, (32)

%

end, similarly, in the cover

Ay = qu _ .- (3b)

This squation shows thaet at every point along the box tho shear flow
acting on the flange is equal to the shear flow in the walls at
that point. .

In order to obtain a reletionship between the shear forces in
the cover and in the spare, a fres body of a cross section of the
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box le considered. Since the taper of the box is such that the
center lines of the flanges meet at a point, the flange loads
contribute no torgue and the condition XT =0 gives the equation,

qﬁbc + qcbc =0

or

q"b = "dg (,'")

Two exprescions for the flange loads are derived, one for the
X, ~forces and another for the Xn_l-forces. The free body of the

flange in figure 3(c¢) shows the loading of the flange under Xn-forces

only. A summation of forces along the flange shovn in figure 3(c)
gives an expression for the flange load F at any point alcng the
bay: .

N fx
da ds
F - G ax + o= X %, dx = 0 - (5)
Jo 0
wherse 4s is & constant depending on the taper of the box. The
dx

combinetion of eguations (2) to (5) gives

X
1
= dx 6
S (6)

If the integration is performed with ¢ glven as a functlon
of x by the equation :

q=cn_l[l-(l-z-%:]—-)—§-:] (7)

- —-—
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equation (6) becomes

X
F =25 qcn-l ——;—-- a . - (8)

where T is. the length of the flange end e is the distance between
bulkheads. , - ) : ) -

With the forces X,., @&pplied at the outboard end of the bay,
the flange loads becoms )

C
P=X_.., +2L a ast X
n-1 o1 o & (9)

In ordsr to obtain g, 1 in tsrms of the X-forcos, the value

of F for both 'Xn-l- and ' X -forces is calculated for X = a.
For the case of the X, -forces

X_=2q, ‘n-l g
n n=1 ©n
or
x .
Q@ =, =R-E (10)
n-l: n-l 2L

For the‘ cage of the an ~-forces

C.
-1
0=X _,+2g -—=1L
n~1 Ch-1 Cp
or
X
9, = -q _ = R-ZL (11)
n-l n-1 2L .

-
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vhere R 1is the taper yvatio = ———. =

bn-1 Cn-1
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By substituting equation (1C) in equations (2), (%), and (8) and
eguation (11) in equations (2), (4), and (9), a sumrary of the stresses

in the bay in terms of the X-forces et the end can be made.

the Xn -forces

and for the X ~forces
n-1

g eE (1 -%x\ na
A ] c & A

where A is the effective arsa of the flange.

Fo:_'

(12)

- (13)
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Deformation of an Individual Bay

Principle of calculation.- Under the action of the torgue
and groups of X-Forces the cross section of the box warps out of
its plene, as shown in figure 2. The magnitvude of this werping is
calculated by the method of virtuel work. The following three steps
are necessary to obtaln the magnitude of the warping. First, the
stresses T and ¢ dJdus to the applied loads are cobtained and
second, the stresses ™ and ¢~ due to a system of dvmmy loads
aye calculated. These dummy loads are unit loads applied at the
point where the deflections are desived and also in the direction
desired. The last step is to obtain the deformetion by use of the

equation
o
Xw = j

l[ggf-av + ‘U\ TéE av (14)

-where V is the volume of the stressed material. Thls equation is
based on the principle that the external work done by the unit force
must equel the intermal energy stored by virtue of the existence of
tho unit force.

Examination of figure 2 shows thet the warping is doubly
entisymmetricel and consegquently the dummy loads employed in the
solution are alsoc doubly entisymmetrical. This group of unit loads
is similar to the group of X-forces and therefore the formulas for
the X-forces can be. used in the calculation of the stresses cauvsed
by dummy loads. )

VWerping ceused by torgue.- The sitresses caused by the torque
acting on the box are, from formule (1),

o =0
. . |
T =2 > (15)
LAY -~
T = o
¢ 2bet, J
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. In order to obtein the warping in the nth bay at bulkhead n, the
entisymetrical group of unit loads is applied at the inboard end
of the bay. The stresses caused by these forces are calculated
from forwules (12) by placing X, = -1. The results are

U=-Snxl )
e al
- R .t N S (16)
o e ¢ 2Lt . ]

b
'b2 21’%

The results for Ty Ty and T, eand for GU, TﬁU, and T;U

given in equations (15) and (16) are now substituted in equation (1k)
to give

ﬂac Tn * Cnfn-1 l. -~
Toa |tk — Jot, ax
= j G- 2bctc ( 2 2Lty ©°©

b1 Ty bpbpay (1
Ly 2 , by, di
- A/c; G 2bctb( b2 2Lt'b tb b---

which yiélds when integrated

w To T (_a_pbn-n..-eg&a.:.-)lﬂ“R an

o —— o ———
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In order to obtain the warping due to torsion at bulkhead n-l,
‘the groups of unit loads are applied at the outboard end of the bay.
Now the stresses dus to the dummy loads are calculated from
formule (13) with X . = 1. The results are as follows:

ﬁ
U1 (1 - En.s)
A c e,
U .
T = °n®p-1 1 s (18)
c2 2L'bc 3
T_bU =.bnbn-l -1
- T RN

. . The stresses dus to the torqué acting on the bay are those
shown in equation (15). An inspection-of the stresses (equetions (16)
and (18)) caused by the wnit loads gives

.“’n =vg,~ =¥ - (19)

Warping ceused by X n‘-_-force‘s.'— The werping et the inboard end
of the bay caused by the X -forces fs obtained by the application
of equation (1k) in the form

: Xn L .U : STyt .
L =k —q—c—--Ads+2f -1 B
.Wni J/; 5 g : o G tbdxb
: 8, \U ) "
L+ j 6TeTe of ax . (20)
do G ¢ ° .

Substitution of the values for the atresses due to the unit loasds
(equation (16)) and the stresses due to ‘the X, -forces (eguation (12))
in equation (20), causes.the equation for warping to become

Xn
wni o= -an n (21)
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vhere . JEIE
i Lol L e bey - ag e Nt e m s
' s Ky -2 4+ (b By 20 el bR 20
™5 s ﬁi(L % L te ) 2 (22)
and ’
2 2
R R :

K, = — 4 -2 10g R (23)

The constant Kl is dependent entirely on the taper ratio for
the individual bays. BRI ‘

As the value of the teper ratic approaches unity, the
expression for K; in equation (23) becomes too sensitive for

~ practical use. By expanding the logerithm .into.an-infinite series

of (R =1}, _ _ ,

1 1 2 3 3 "
K =l - R "'l - - R "l —— ‘1 sev e
1 +35 ) 5.,( | ) + (R )

) = -0 (e

L@ 1) (m+2) (m + 3)

This expression can only be used for:.small values of - R, since the

geries converges only for values of R < 2. The rate of convergence
ie very slow, howsver, after R -reaches & value of approximately 1.5.
For values of R <1.5 only four terms of the series are needed to
evaluate X3 within 1 percent. A.graph of numerical values for Kl

from R = 1.00 to R = 3.00 cen be seen in figure 4.

The werping at the outbosrd ehd of the bay caused by the

‘ Xn-forces can be written in the form

=R (@)

.. - ‘_’r Xn .
'nQ. 2
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‘where the coefficient J, 1is obtained by the application of

equation (14). By substituting the values for uwnit stresses from
equation (18) and the value for X -strosses from eguaticn (12) into
equation (14) and integrating the result, 3, is found to be given by

L 1l fa bn-] 8s Chn-1 IR + 1
J = - ——— e m— _.b. - .-..g’- . 2
n = 2 gm BGL(L ty L g ) 2 (26)

where

2R° - 2R - (1 +R) R log, R

® - 1)3

K, = -6 (27)

For small values of R, again the expanded series for k5,

el ke-D eg @,

6(m - 1)
(m+ 1)@ + 2)(m + 3)

+ (-1 ® - )" (28)

is more practical. As for Kl, the rate of convergence of the

geries makes the expression practiéa.i only for the renge from R = 1.00 '
to R = 1.50. The numerical velues for K, are plotted in Figure k.

Warping ceaused by Xn_l-ﬁorceé. - The warping at the inboard

end of the bay, caused by the Xn_l-_forces, can be shown, by means
of Maxwell's law of reciprocal deflectién, to be equal to

s

s = Jan_l: - . 7 (29)

vhere J, 1is the expression given in equation (26).
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The warping at the outboerd end of the bay ls derived by
substituting the values of the stresses for unit loads from
equation (1.8) and the values of the stresses for the Iﬁ_l-forces

from eguation (13) into equation (14). Upon inteégrating the result,
the following expression is cobtained:

Xn-1 ' _
wno = £pXn (30)
vhere
£, =K, = + 57— ot Sol S e+ L R 1
D T3 3FA 0 &g (L by L te 2 (31)
and
/.2 o
{R” - 1}- 2R log R
By=3 |~ 3 (32)
: (R - 1)
For small values of R, the expanded series form for K3,
1 .'3 2 1 3
K =l+*>~R-1)+=R=~=1) ~-=(8~-1).
5 @D+ @1 -5(R )
m . m
+(-1) 8 (R -1 - (33)

(@ + 2)(m + 3)

should be ised. As was the cese for the expressions for K, and Ka,
the rate of convergence of the series mekes the expression for K3

. practical only within the limits of R = 1.00 and R = 1.50.

Comparison of tepsred-box formulas wilth uniform crossg-gsec
formules.- A comparison. of the formulag derived for the tapered
box beams with those formulas derived for the nontapered box
by Kuhn in reference 1 cen easily be made by obtaining the formulas
for the special case of bapsr where the taper ratio is unity.
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With this assumption, the following relations hold true

Equation (17) now becomes

which is identical with equation (21) of reference 1.  Equations. (22)
.end (31) become . , o ‘ o

= T —..-.E..-]-.i.'h_...‘.g._”,
_Pn n.3EA 8Ga(t'b+tc)

vhich is ldentical with equation (23) - of reference l. Equation (26)‘
becomes ) -7 ’ :

n ~  GAE 8Ga“(ﬁb' _?c)

which is identical with equetions (27) of reference 1.

This comparison shows that all the tapered-box Fformulas Ffor the
special caese of R = 1.0 or uniform cross section are identical
with those formules developed in reference 1.- ’

Derivation of a recurrence Fformuia.- The 'Eotal werping at the
ends of the bey n due to the combined effocts of the three separate
forces T, X,, and Xp.; can now be obtained by & summation of all

the ccémponent parts. The equation for the warping at the inbecard end of
‘bay n 1s given by the sum of gquations (19), (21), and (29)

o, = wnT - Pp, + ,Jilxﬁ_l [CON
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The equeticn for warping at the outboard end of bay =n given by
the summation of equations.(19), (25), and (30) is

Voo = wpt = dnXp + Ep¥ne) (35)

The equation for werping at the outboard end of bay n + 1 is
obtained merely by increasing all subscripts of eguastion (35) by
one and is

. T . *
Yin+l), = whtl " Inei¥ner * Enarfy (36)

According to the principle of conplstent defoxrmation, the
wvarping at the outboard end of one bay must be equal to. the warping
at the inboerd end of the adjacent bay. A recurrence formmla can
therefore be obtained by equating the warping formumlas of two
adjacent bays. By equating the expression for Whi in equation (34)

and the expression for w(n+l) in eguation (36), the general
° ;

recurrence Fformule becomes

. - ' o m
Iekn-1 ( Tne * Pn} X+ Jn+l n+l = ¥nel T Vn (37)

By giving n successive values from n =1 %o n=r, a
get of r equations is obtained, each of which contains three of
the redundant X-forces. These equations represent the continuity
conditiona at stations 1 to r. The tip of the box is usuelly free
from any restraint, thereby making the force X, at the tip of the

box zero. Thersfore, for a box divided into r bays, »r rcdundant
forces and r eguations exist.

Boundary condition.~ With the tip of the box fres from any
restraints end the tip force X = 0, the first equation of the

gysten is .

;{fé + 1) X + Xy = WQT - wlT (38)

DR R
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When & . beam ig attached to & rigid foundation, the foundetion may
be considered a bay r + 1 "having infinite shear stiffness and
infinite exlal stiffness; therefors, o

Vpry = f::'+Il,. = dp1

The last equation of the system now becomes

3E, Ly " BEp = W o (39)

Comparison of stresses for boxes with varyine taper ratio end
flange area.- In order to show the effect of taper on the bending
stresses due to torsion, calculations were made of the flengs and
‘sheet stresses for boxes with varying teper ratio ani flange area.
"All boxes were. 120 inches long and were divided inbto six bays of
equal length. The root sections of the boxes were ldentical. The -
dimensions for the boxes at the root and tip can be seen in table 1.

In figure 5(a), curves of the flange stresses are drawn for
the three boxes with constant flange areas and also for the
moderately and highly tevered boxes with a tapered flange arsa.

In Ffigure 5(b), curves of the sheet stresses ere drawn only for th
three boxes with the tapered flenge area. L
Figure 5(a) shows that the flange stresses for the case of the

moderately tapered box (curves C and D) are only slightly greater
than those of the nontapered box (curve E). Examination of the root
flange stresses for all cases shows that the increase in these
stresses for sn increase-in teper is very small; the root flange
stress for the highly tapered box is approximately 10 percent above
that of the nontapered box. Since, as in the nontapered box, the
Plange stresses for the box with moderate btaper decrease very rapldly,
the only apprecisble flange stressges occur in the vicinity of the root.
As the teper becomes greater, however, the flange stresses along the
total spen increase. Inspection of curves A and B shows thet
the flenge stresses at a point 20 inches from the tip are approxi-
metely ons~-third of the meximum flange stresses at the root.
Consequently, for the box beam with moderate teaper the bending stresses
due to torsion in. the outboerd end ars negligible as compared with

the stresses near the root, whereas in the highly tapered box the
flange stressocs do becdome apprecieble. A similar conclusion for the
sheet stresses cen be reached by the ingpection of figure 5(b).
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Comperison of curves A and B and curves C and D in
figure 5(a) shows the effect of a variation of flenge ares along
the span on the flange stresses. The maximum effect appears near
the tip of the box where the flenge stress for the box with tapersed-
flange areas 1s approximately 20 percent higher than the flenge
stress in the box with constent flange area.

Two sets of caleuletions for the root stresses were made for
a moderately tapered box under e distributed torgue loading. The
distribution of the torque was such that the increment of torqus
in each bay was proportional to the chord of the bay at the inboard
end. The method presented herein ie used for the first calculation
which was an exasct solution of ths root stresses. The second
calculation was made on the assuvmption that the box consilsted only of
the root bay with the total torque acting on the outboard end. The
result of these caleculstions showed that the rcot sitresses celculatsed
by means of the exact method were epproximately 10 percent greater
than the root stresses calculated by the epproximete method. Similer
results were observed for a calculation of the stresses in the highly
tapered box under a similer distribution of torgue. When only the
epproximate velue of the stresses at the root is required, a satis~
factory enswer can be obtained by assuming that the box consists only
of the root bay and that the total torgue is concentreted at the
outboard end of that bay. )

In both setes of calculatlons with the distributed torque, the
flange stresses near the tlp of all the boxes were approximetely of
the same order of magnitude &s those of the moderately tepered box
with t3ip loading shown in figure 5(a).

EXPERIMENTAL VERIFICATION OF FORMULAS

Tegt specimens.~ In ordsr to cobteln experimental verification
pf +the formules derived herein, a large tapered hox beam was
congtructed and tested. The box wes made gymmetricel ebout the midspen
and wasg supported there by & rigid frame as shown in figure 6.
Because of this setup, conmplete restraint asgainst warping et the
rcot, which is the midspan of the box, was assured. Equal torques
were applled at the tlps and later et the gquarter points of the span.

The material used for the box wes 245-T aluminum alloy end the
general dimensions of the specimen are shown in figure 7. The
thicknesses of the covers and the spar webs and the sizes of the
flanges, stiffeners, and stringers are also shown in figure 7.
Genoral dimensions end stringer spacing of both the root and

e wm aw = T = T———rv—— = v o — e . x

————— a—
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tip sections ere shown in figure 8, along with ‘the dimensions for
the equivalent substitute- sections. The dimensions of the box '
vary linearly from the tip to the root “whereas the thicknesses
of the sheets and sizes of the flanges and stringers are constant
- for the whole box. Al'bhough the flenge area of the simplified
gtructure veries -linearly from the tip to. the root due to the
addition of one-mixth the ares of the cover and Epar web, an
average Tlange erea in each bay is used in the calculations.__ In
order to assure thet the’ 'oul::heads were rigid. for all, pra.ctical
purposes R ths bulkheads were ma.de of formed -é~inch steel pla.te. .
Eest se $up.~ The. genera.l 'best se’mp is shovn in figure 6
The ‘box beam was connected to the center towexr by means of four
steel flexure plates, one on each side of: the box. In order to-.
reduce the end sffects as much as possibls, the box was connected

to the flexure pla.’ces at the root by closely spaced r];-inch bolts.

This type of connec'bion permits the torque resction to-be distt‘ibuted.
as & uniform shear flow around the perimeter of the hox. Figure 6.
shows the loading errangment at the.tips of the box. The same °
method of loading was used when the tssts wers yrun’ with loads at .

. 'bhe q_ua.r‘bsr-span points._ e o . . A

‘Test procsdure' - Strain gurveys wers mad.s for 'bo.th loadings

with 2-inch Tuckermen optical strain gages. Shear-strain measurements
were teken around the perimester of the box at sections near the-
_center line of each bey, gna. also at sectlons 15 inches on e;l.ther
-glde .of 'bulkheads ll- and 5 The " shear-strs.in measuremen'bs a.cross ’
any cross ssction consisted in meaesuremsnts made betweon the :
stringers and between the. flange and adjacent stringer on the covers
and three equally spaced measurements in the spaxr wab. Ths sheay
stresses were obtained from strain resdings at ’+5 and 135 from the
axls of the structure. The normal strains were meagured along sach

fla.nge ‘et approximate y 3-inch intervals starting at ZL— inches from
the root:.

For each tegt run, strain-gage rea.dlngs were ‘teken at zero

torque &nd. after each of four equal increments of 75,000 inch-pounds
of torque. The load was then released and another zero reading was
teken. If the two sets -of zero readings did not agree within 100 psi,
& new test run waes made. The strain readings for each gage were then
plotted againet torque and the best straight line wes drawn. through
the points. If the line did not intersect-ths arigin, & parellel line
was drawn-through the origin. If, however, the new line was displaced
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from the originel line by more than a strain equivelent to 200 psi,
e new set of readings was taken. The values of strain were then
obtained Trom this new parallel line.-

Test results.- In converting the results obtained from the
gtrain surveys to atresses, Young's modulus was taken as 10,600 ksi
end the shear modulus as 4,000 ksi.

The observed sheer siress of & cover or & gpar at any section
i1z the average of the shear sitresses obtained for the two opposite
covers cor spars at that section. Figure 9 shows that the distridbution
of the shear stresses .across the covers and spars 1s constant
throughout the section, except for the part of the skin between
the flange and the adjacent stringer. These plots substantiats In
part the originel esssumption of uniform shear stresses over the
¢ross section. ’

_ 'The observed flange stress &t any sectlon ig the average of
the flange stresses obtained for the four flanges at that section.
In figure 10 a plot of the stringer stresses-at a oross section
in bays 5 and 6 is shown. Strain readinas were taken on each
stringer on the leg adjacent to the cover. The cross ssction in
beys 5 end 6 were chosen because the normel stresses were the largsst
in those bays. Figure 10 shows that the chordwise distributlion of
the stringer stresses in the cover 1s aepproximately linear; thereby
the use of the theoretical sequivalent-area coeffilcient of cne-gixth
appears to be justified.

2

Comperigson of test results with theorstical curves.=- A comparison

of the observed and calculated shear flow and normal flenge stresses
for both loading conditions can be seen in figuree 11 to 14, The .
stresses were calculated as shown in the. appendix by means of the
Tormules presented in this. papsr.

" Bxsminetion of figures 11 and 12 shows very good agreemént
between the observed and celculated shear-stress values. The only
point in the tip loading condition (fig. 11) thet does not fall
on the -calculated curve wlthin the accuracy of the Tuckerman gags
readings is a point on the spar 7.5 inches from the tip, which is
approximetely 5 percent greater than the corresponding calculated
valus. Thies deviation from the calculated curve is probably caused
by the fact thet the sectlon at which this measurement.is taken is.
near the tip of the box where the load 1s being applled. . .

..Examination of Pigures 13 and 14 shows good agéeement between
the experimentel end celculeted values of the axial loads in the
flange due to torsion. For both loading copditions, the observed
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values in bays 5 and 6, which include the most criticel loads (the
loads at the root of 'bhe box), egree within the dccuracy of the
Tuckerman gage reading. The o'bserved values in bays 3 and b compare
favorebly with the calculated vaelues for the tip-loading condition.
For the quarter-point loading condition, however, the observed
vaelues for the test points in the viclnity of bullhead 3 are
slightly greater than the calculated values for the seme points.
This deviation from the calculated values cen be explained by the
uncerteinty of the conditions at the point of loading. The extent
to which the losding fixture restrains the flanges from warping

and the fact that the torque applied to the box through the spar
webs neede an appreclable distance to be dlstributed are only the
obvious reasons for deviations to occur in the vicinity of the
loading bulkheads. Also for these reasons, no attempt was made

to evaluate the stresses in the tip bay for the tip loading condition.

The velues of the experimental stresses in figures 13 and 1k,
taken within 5 inches of bulkheads 1 and 2, are somewhat greater
than the calculated values. This deviaetion may be explained in
part by local bending of the flenge. The flange acts as a
continuouns beam supported by an slastic foundation and loaded at
each bulkhead. The hending moment in this beem is ‘the greatest
at the bulkheads where the deviation of the observed values from the
calculated values ave the greatest.

CONCLUDING REMARKS

The agreement that was obteined between the experimental
bending stresses due to torsion in & tapered box beeam and the
calculated values indicates that the method presented can he used
‘o obtain the 'bending-stress distribution in a tapered box beam
vnder torsion.

For boxes with very s&mall teper the flange stresses in the
outboard half of the box ere very small. In these boxes a first
~ approximation of the bend.ing gtresses due to torsion can be made

by using the properties of the tapered box at the root, by
considering the box nontapered, and then using the method. of
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enalysle described by Paul EKuhn in his paper on bending stresses

due- to. torsion -, (NACA ARR, Dec. 1942). For more accurate calculations
-of- the benﬁing strogses duesto torsion in a ‘tapered box, however, ‘the
method presented herein should be. used. .

Langley Mcmorial Aeronautical ~.z:ﬂ)o::'a‘l;ory _
.National Advisory: Committes ‘for Aerondutics
Lengley ¥ield, Va., February 13, gkt

et
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APTENDIX
SOLUTION OF STRESS DISTRIBUTLION IN TAFPERED BOX BEAM

In order to give en illustration of the method, a complete
solution of the shear and normal stress d.is-i:.ribut_..on in the
tapsred box used &s & test specimen is given.

The actual over-all dimsnsions of the specimen are glven in
figure 7. The dimensions at the root and tip cross sectiong are
glven in figure 8, together with the dimensions for the equivalent
structure. The effective flange area is chtained from the
eguation o t

i 1 1 '
= =z = =
A A_F + 7 Ag * z bty +Zct, (A1)

vhere An 1s the ares of e flange angle and Ay 1s the area

of a cover stringer. The effective flange areas are assumed to

be concentrated at the pcints of intersectlon of the center lines

of the cover sheets and spar webs. AIl properties of the eguivalent
.‘box taper linearly from tip to root. The box is divided into

‘six bays. The geoomotrical propcrties for the inboard a.nd. outboard
end of each bay ere listed in table 2. ..

The velues of B end G used in these calculations are,
respectively, 10,600 kei end 4,000 kei. For the fivst loading
‘condition, a 'borque of 100, 000 inch-pounds 1is applied to the tip
of the box and for +the second. loeding condition a torque of
100, OOO inch-pound.s is applied to the middle bulkhead of the box.

The verping constants 'p, §, and £, calculated by meens
of the eguations (22), (26), and (31), ‘and the warping due to -
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toraion th, calculated by the use of equation (17), are tebulated
in the following table. The tabulated th values are for the load

at tip of box.

Warping constants
Bay P
Pn dn fn Yn
1 1.610 x 1075]0.829 w 10"011.56n x 107 6439 x 1076
2 1.551 574 1.511 5848
3 1.647 - - _.684 1.585 5274
b 1.71% 794 1.660 %803
5 1.785 .90k 3..739' hhio
6 1.857 11.012° 1.817 11083

For & box with six bays, the recurrence formula (equation (37))
end the .equations for the boundery conditions (equations (38) and (39))

give the following six eguations.

(Lt T2 )Xy + do¥y =t - W ]
Xy - (PE . f3)5{2 + Jg¥g = w3 - wp' _
3%y - (P3*fu X +31LX1+=W4T'“3T >
s (pl‘_ * £ )Xh + 35}(5 - w5T -
JsXy, (‘P5 * f6) + 3g% = Vg " V5
Ig¥s = 6 %g = g /
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From substitution of the values from the preceding teble into the
formulas of equation (A2), the following set of simnltaneous equations
is obtalned for the first tlp loading condition:

Xl X2 X3 Xl-!- X5 _ Xs Wn+l - Wn
-3.121 | 0.57h =501
S57h | -3.166 | 0.684 - ~57h
68k [-3.307 | 0.794 =471
794 {-3.453 | 0.90k% =393
904 | =3.602| 1.011| =327
1,011} -1.857| -4083

The soluticn of these equatione glves

Xl = 2L} zl‘ = 437
XE = 292 X,j = 965
X, =307 X =272k

These values give the flange loads at each bulkhead. In order to
obtain the distribution of the flange loads between the bulkheads,
the formula

F=X_ _ + (xn - X, . %’é (83)

obtained from & summation of equations (12) and (13) is used.

For calculation of the distribution of the shear flow along
the spen of the box, the formules

\
= %% 1 ( — ) T
fo, =7 2 2L *n " En-1) * g
and > (ak)
c..C ' T
= - .E_B.:l._l_( -X ) P
% ao N ") Y J

X 62.
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:;-obtalned from .a summation of equations (1), (12), end (13) are used.
. A tebulation of :the flange 1oads -and shear :E‘lowB can 'be ‘seen, in
table 3. .

" For the quérter-point loading condition the velues for the
warping constants p, J, and £ are the seme &s those for the
tip loading condition. Also the values for wnT' ere’ the same except

in beys’l, 2, end 3 vhere wnT is zero. The formulas (A2) cen still

be uwsed for this loading condition. By substitubting the appropriate
values in equation (A2), the following set of simulitansous equa.tions
is obtalned for ‘the querter-point loading condition:

: Xl X2 ' X3 Xh _X5 X6 LAY - W
"30]21 0-572'- A ' .'"' . e 0 N
S7h| =3.166 | 0.684 0
684 | ~3.307 1 0.79% 4803
7ok | ~3.453 | O0.90k =393
904 |-3.602 | 1.011| ~-327
, BT 1.011 1-1.857] ~-4083
The solution of these egquations glves
X = -63 '?‘uf -21 .
X, = =343 Xs = 829
x_3 = -1528 . Xg = 2650

Again, by the use of the equations (A3) end (Ak) the distri’bu’cion
of the flange loeds end shesr flows was obtalned along the spen.
The tebulations of these flenge loeds and shear flows are shown
in table k4.

B e e .
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TABIE 1

ROOT AND TIP DIMENSIONS OF BOX HEAMS

LBZT "oN NI VOVN

by

te

b c A A
‘Section (1n.) | (4n.) | (in.) | (in.) | (Conmtant) | (Tapered)
(eq in.) (sq in.}

Root 50.000 | 10.000 | 0.06% | 0.072 1,000 1.000
™p:

Highly

tapered 20.000° | 4.000| .06% | .072 1.000 <200

Moderately

tapered © | 35.000 | 7.000 | .06% | .072 1.600 200

Nontapered | 50.000 | 10.000 | .06k 072 1.000 200

NATIONAL ADVISCRY

COMMITTEE FOR AERONAUTICS




TABIR 2

GEQMETRICAL FROPERTIES OF BAYE IN- TAFERED BOX HEAM

a %o . L Cp-1 °n Pay | %o g % A
Bay | (12.)| (i2.){ (in.} {(1.) [(1n.} | {dn.) | (1me) | (m) [{2n.) |{4n.) ?mpwu; R{E | K mu_
1 | 15.0 |15.050 | 15.000 | 15.050|5.860 | 6.416 | 26.132 | 28.602(0.0700 |0.0629| ©.935 |1.093|1.045 |0.998 |0.995
.2 | 20.0 {20.067 |20.003 |20.071|6.516 | 7.146 | 28.602 | 31.86! .0700 | .0829 .B.m J1.1h (1054 | 997 | .96
3 | 20.0 |20.067 | 20.003 | 20.071 (7,146 | 7.875 | 31.896 | 35.190| .0700 | .09 | 1.015 |1.102(1.0% | .998 | .950
b | 20.0 {20067 | 20.003 { 20.071|7.875 [ 8.605 | 35.190 | 38.48k| 0700 | .0629| 1.05¢ |1.093)1.045| .99B | .95%
5 | 20.0 {20.067 | 20.003 | 20.0718.605 | 9433% | 38.h484 | k1.T78| .0700 .mﬁm 1101 [1.085(1.040 | .998 | .960
6 | 20.0 |20.067 | 20.003 | 20.071 |9.334 |10.064 | b1.778 | 45.072| 0700 | 0829 | 1.145 {1.078/2.037 | .999 | .963

n..?-ﬁ.amq of effactive aress at inhoard andl outboard ends of bey.

FATIONAL ADVISORY
GOMMITTEE FOR ARROFAUTICS
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TABIE 3
CALCULATED NOBﬁAL AND SHEAR STRESSES IN

TAPERED BOX EEAM FOR LOAD AT TTP
[r = 100,000 1n.-11}

32

: Dié'bance F o %o 1:: Oy

Bay fr?z;n %p (1b) (pst) | (1b/in.) | (psi) | (1b/in.) (psi)
0 0 0 334.9 478 317.1 5040

1 10 167 178 206.7 . Loko 280.9 kY470
15 24k 257 279.9 k000 265.1 k210

15 2y | 257 273.8 3910 271.2 k310

2 25 269 277 245.0 3500 22.6 3860
'35 292 29l 220.4 3150 218.2 3470

35 292 29k 219.7 3140 218.9 3480

3 45 300 296 198.9 280 198.1 3150
55 307 296 180.7 ’ 258 18.1 2860

55 307 | 296 183.9 2630 176.9 2810

i 65 375 354 167.9 2400 161.5 2570
e 137 45 | 15k.0 2200 | 148.0 2350

i) 437 hos 165.3 | 2360 136.7 2170

5 & T2 647 152.0 2170 125.8 2000
95 965 859 1%0.3 2000 116.1 1850

%5 965 | 89 175-3 2500 é.1 1290

6 105 1878 1640 162.3 2320 5.1 1190
115 272k 2336 150.8 2150 69.6 1110

NATIONAL ADVISORY
COMMITIEE FOR AERONAUTICS
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TABIE 4

NACA TN No. 1297

CALCULATED NORMAL AND SHEAR STRESSES IN TAFERED BOX

BEAM FOR LOAD AT QUARTER POINT OF SPAN

ﬁ:ﬁg; F F] % To 9p Tp

(1n.) () | (ps1) | (v/in) | (psi) [ (1b/in. (psi)
T =0

0 0. 0 2.3 - =30 2.3 ko
10 =43 -46 2.0 -30 2.0 30
15 ~63 -66 -1.9 =30 1.9 30
15 -63 -66 -7.8 =110 7.8 120
25 211 -217 -6.9 =100 6.9 110
35 =343 | -345 6.3 -0 6.3 100
35 343 | 35 | =325 -460 2.5 520
45 ~965 -951 -29.4 =420 29.4 k70
55 -1528 | -1473 26.8 -380 26.8 430

T = 100,000 in.-1b

55 -1528 | -1473 £21.5 3160 139.3 2210
~65 ~Tho -699 202.1 2850 127.3 2020
'3 21 -19 185.4 2650 116.6 1850
) 21 -19 174.0 240 | 128.0 2030
& hea ‘38 160.0 2290 117.8 1870
95 829 738 147.8 2110 108.6 1730
95 829 738 177.0 2530 79 .4 1260
105 177h 15hg 163.9 2340 73.5 1170
115 2650 .2273 152.3 218 68.1 108

NATTONAL ADVISORY

COMMITTEE FOR AERONAUTICS
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Fig. 2 . : NACA TN No, 1297 . .

Figure. 2 —Free-body skefch of typical bay n.
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(a) Flange siresses.

Figure 5— Comparison of siresses in boxes with varying taper
T=100,000 inch-pounds.

A —High ftaper, tapered flange area
B —High taper, constant flange area
B C—Moderate tapér, tapered flange area
D — Moderatfe taper, constant flange area
E —No taper, constant flonge area
Bulkhead | Root
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NACA TN No. 1207 | N Fig. 11
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Figurc [1— Comparison of experimenfal and calculated sheor flows for tip looding condition.

T-100,000 inch-pounds.



Fig. 12 NACA TN No. 1297
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Figure 12— GComparison of experimental and calculated sheor flows for quarter—point

toading condition. T=100,000 inch-pounds,
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NACA TN No. 1297 Fig. 13
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Figure I13.— Comparison of experimental dnd cdlculated flange loads for tip loading condition.

T=100,000 inch-pounds.
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Figure 14— GComporison of experimentel and colculoted flange loods for quorter- point

loading cendition, T=100000 inch-pounds,




